Photosensitized Dimerization of Styrene Derivatives by a Cation Radical Transfer Mechanism

By TADASHI ASANUMA, TETSUYA GOTOH, AKIRA TSUCHIDA, MASAHIDE YAMAMOTO,* and YASUNORI NISHIJIMA (Department of Polymer Chemistry, Kyoto University, Kyoto 606, Japan)

Summary Selective photoexcitation of phenanthrene in a mixture of phenanthrene, α -methylstyrene, and mdicyanobenzene in MeCN and in MeCN-MeOH (1:1) gave 1,4-dimethyl-1-phenyl-1,2,3,4-tetrahydronaphthalene and 1,4-dimethyl-1-methoxy-1,4-diphenylbutane, respectively, products which are formed from the α methylstyrene cation radical which is formed by cation radical transfer from phenanthrene cation radical to $\alpha\text{-methylstyrene.}$

RECENTLY the photodimerization of olefins via cation radicals has been extensively studied and a cation radical transfer mechanism has been proposed for the dimerization of olefins in the dark reaction,¹ and in the photochemical reaction.² We have previously reported photodimerization of styrene derivatives via cation radicals3 and we now report photochemical dimerization of styrene derivatives via a cation radical transfer mechanism.

Irradiation of a degassed solution of phenanthrene (1) (20 mmol/l), m-dicyanobenzene (2) (20 mmol/l), and α methylstyrene (96 mmol/l) in MeCN through a filter (> 320 nm) with a 300 W high-pressure mercury lamp at room temperature gave the dimeric products (41.1% after 20 h irradiation) (4) and (5) in the ratio of 95:5.[†] The tetralin (4) is a characteristic product of the α -methylstyrene cation radical.³ In the absence of the sensitizer (1)or the electron acceptor (2), the system gave no photoproduct under these conditions. Addition of triethylamine (0.5 vol %) to the system quenched the reaction completely. Addition of MeOH (50 vol %) to the system suppressed the yield of dimers (16.0%) after 20 h irradiation) and gave mainly the methanolysis product (6), \dagger together with (4) and an unknown product in a ratio of 71:14:15, respectively. G.l.c. analysis showed that the sensitizer (1) was not consumed. This photodimerization occurred efficiently in MeCN: the overall rate in other solvents decreased in the following order: MeCN > PrⁿCN > PhCN > Me_oCO > C_6H_6 (no reaction), the order of which corresponds that of photoionization quantum yield. Naphthalene could replace (1) as an efficient sensitizer. Other electron acceptors, e.g., o- and p-dicyanobenzene and dimethyl terephthalate were also effective.

The reaction of styrene in this system [naphthalene or (1), (2), and styrene] was similar to that of α -methylstyrene; excitation of naphthalene or (1) by irradiation through Pyrex in MeCN or MeCN-MeOH (1:1) gave the characteristic cation radical products 1-phenyl-1,2,3,4tetrahydronaphthalene (97% of the total dimer) or 1methoxy-1,4-diphenylbutane[†] (50% of the total dimer).

We suggest the reaction mechanism in the Scheme. Excited singlet (1) and the electron acceptor form an exciplex in non-polar solvents; in polar solvents the system produces the cation radical (1)⁺ and the anion radical (2)⁻. Electron transfer from (3) to (1)⁺ results in the cation radical \ddagger (3)⁺ which gives the characteristic products (4) or (6).^{3,4}

SCHEME

The cation radical transfer (1)⁺ to (3)⁺ could be shown spectroscopically by irradiation with a ruby laser (347 nm excitation) of the system (1)-p-dicyanobenzene in MeCN which gave a superposed absorption spectrum of (1)⁺ (400, 430, and 900)⁵ and p-dicyanobenzene anion radical (430 nm).⁶ Addition of (3) to this system quenched the absorption spectrum of (1)⁺ and a new absorption peak appeared around 470 nm within 50 ns, which can be ascribed to the α -methylstyrene dimer cation radical.⁷

(Received, 28th April 1977; Com. 404.)

† Structures of the products were determined on the basis of i.r. and n.m.r., spectroscopy, mass spectrometry, and elemental analysis. \ddagger For cation radical transfer, the electron affinity of (1)^{\ddagger} needs to be larger than the ionization potential of (3).

- ¹ A. Ledwith, Accounts Chem. Res., 1972, 5, 133.
- * S. Farid, S. E. Hartman, and T. R. Evans, in 'The Exciplex,' eds. M. Gordon and W. R. Ware, Academic Press, New York, 1975, pp. 327. ³ T. Asanuma, M. Yamamoto, and Y. Nishijima, J.C.S. Chem. Comm., 1975, 608.

 - ¹ R. A. Neunteufel and D. R. Arnold, J. Amer. Chem. Soc., 1973, 95, 4080.
 ⁵ T. Shida and S. Iwata, J. Amer. Chem. Soc., 1973, 95, 3473.
 ⁶ A. Ishitani and S. Nagakura, Theor. Chim. Acta, 1966, 4, 236.

 - ⁷ M. Irie, H. Masuhara, K. Hayashi, and N. Mataga, J. Phys. Chem., 1974, 78, 341.